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ABSTRACT 
Product design is knowledge-intensive process and involves large quantities of decisions. The 
efficiency and effectiveness of these decisions depends on the provision of many kinds of related 
knowledge to designers from different sources throughout the lifecycle. Knowledge on product quality 
is one of the most important knowledge sources. To provide quality related knowledge, this paper 
proposed one data mining based knowledge discovery approach. First, decision making during the 
engineering design process is analyzed and classified into two main categories, namely organizational 
and technical decisions. Second, this paper analyzed and classified product design knowledge into 
three categories such as product, process and product support knowledge. Then knowledge needs of 
design decisions are also analyzed. Third, a data mining based quality related knowledge discovery 
approach is proposed. This approach can extract quality related knowledge from large volume of 
manufacturing quality data. This approach is illustrated by an example adapted from literature. Finally, 
some conclusions and future works are discussed. 
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1 INTRODUCTION 
The engineering design process can be seen as a series of interrelated operations that is driven by 
decisions [1]. In developing a large, complex product, there may be 10 million decisions and the most 
critical decisions may be roughly 1000 to 10,000 [2]. Engineering design is also a knowledge intensive 
activity. Thus there is an overwhelming need to provide knowledge support decision throughout the 
design process. The knowledge used comes from a variety of sources, from within the company as 
well as from outside, from work related as well as non-work related events [3]. The knowledge may 
exist in many areas including ergonomics, packaging, management, manufacturing processes and so 
on [4] (Figure 1). As products become more complex and competition intensifies, it is essential to 
make the maximum use of the available knowledge and to deliver that knowledge in the appropriate 
form at the right time in the product development process. 
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Figure 1. Knowledge areas for design 

In the age of digital information, a large amount of quality data has been automatically or semi-
automatically collected during the product manufacturing process. However, much of the industrial 
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data are in fact not used, or at least, not used efficiently, which leads to an undesirable situation – data 
rich, but information poor. There are much research and applications of data mining (DM) in 
manufacturing data to improve the quality of the product. However, the patterns extracted from the 
raw data are only used by decision makers in manufacturing process. In fact, this knowledge may 
include useful ones for decision makers in product design process. Decision makers may potentially 
use the information buried in the raw data to assist their decisions through DM for possibly identifying 
the specific patterns of the data [5]. 
Most of the design engineers rely on their own domain knowledge and experience to determine the 
specific characteristics of products. However, such judgments are ineffective and limited by their own 
domain knowledge. Therefore, it has become an important topic to effectively transfer plethora and 
complex manufacturing quality data (MQD) into valuable information and knowledge for quality 
improvements and product design. The extracted information and knowledge can assist the designers 
as their reference and basis for similar product design. 
This paper is organized as follows. Section 2 describes decision-making in product design and 
classifies these decisions. Section 3 classifies the product design knowledge into several categories 
and illustrates the knowledge needs of decisions. Section 4 illustrates the process of DM in MQD. 
Section 5 proposes a framework of knowledge support for design decisions. Section 6 concludes with 
discussion and further research directions. 

2 DECISION-MAKING IN ENGINEERING DESIGN 
It is difficult to overestimate the importance of design decisions. For example, it has been reported that 
upwards of 70% of a product’s manufacturing cost is dictated by decisions made during the product 
design stage [6]. Poor product design decisions causes many defects on the production floor [7].Thus, 
an effective design process relies heavily upon effective decision making [8]. 

2.1 Decision and Design Decision 
According to Simon [9], the work of managers, of scientists, of engineers, of lawyers is work of 
choosing issues that require attention, setting goals, finding or designing suitable courses of action, 
and evaluating and choosing among alternative actions. The first three of these activities--fixing 
agendas, setting goals, and designing actions--are usually called problem solving; the last, evaluating 
and choosing, is usually called decision making. Mezher [10] describes decision as “a process which 
generates and evaluates alternatives and which makes choices among them”. Others see decision as 
one step in the complete problem solving process which including goal clarification, solution search, 
solution analysis, solution valuation, decision and control [11]. 
Any action involves decisions. Also, thus, with engineering design [12]. Design activities involve 
decision-making. However, we believe that not all design activities are decision activities. When the 
design task is extremely well-formulated, the design engineer’s decision-making process is the 
solution of an optimization problem. Here decision-making is problem-solving. In contrast, when the 
design task is ill-formulated, design engineers are less able to apply formulaic numerical techniques to 
“solve the design problem.” In these cases, the design engineer’s decision-making process is a 
collection of heuristics that generate and evaluate solutions until a satisfactory one is found [13]. 
According to Accreditation Board for Engineering and Technology (ABET) [14], decision-making 
defines engineering design. ABET says that design is "a decision-making process (often iterative), in 
which basic sciences, mathematics, and the engineering sciences are applied to convert resources 
optimally to meet stated needs." The natural conclusion is that to be good designers, engineers should 
be skilled decision-makers. 
Much works have been done on decision-making in engineering design by both academy and 
industrial practice. In academia, there exist guidelines and analysis for decision-making in design 
methodology literature [15-18]. However, a survey carried out in British industry [19] indicates that 
design methods are sparsely adopted and used in industrial practice. An empirical study of engineering 
designers in industrial practice [20] has not found support for the generally believed approach. 
Ahmed’s study indicates that engineering designers follow a design strategy dependent on their 
perception of the current status of the design process rather than applying a decision method. Based 
upon a study of current state-of-the-art literature and methodologies, Hansen & Andreasen [21] 
propose a framework of design decision-making consisting of two models; the decision node is a 
generic model of the interrelated decision-making activities consisting of six subactivities: to specify, 
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to evaluate solution alternatives, to validate a design solution, to navigate through the solution/activity 
space, to unify the current decision into consistent wholes, and to decide. The decision map is a model 
of the object of decision-making during design. More works on this decision model are referred to [22-
25]. Herrmann and Schmidt [13] view product development as a decision production system, they 
define a decision production system as an information flow governed by decision-makers who make 
both design decisions and development decisions under time and budget constraints.  
The design engineering community has focused much effort on understanding design as a decision-
making activity. This work has yielded Decision-Based Design (DBD), a perspective that views 
design as a decision-making process involving values, uncertainty, and risk. (Details on DBD can be 
found online in the Decision-Based Design Workshop at http://dbd.eng.buffalo.edu/, and the published 
book “Decision Making in Engineering Design” [26]).  

2.2 Classification of Decisions in Design 
Product development includes many different types of decision-making by engineers and managers. 
Herrmann and Schmidt [13] divided these decisions into design decisions and development decisions. 
Design decisions determine the product form and specify the manufacturing processes to be used. 
Design decisions generate information about the product design itself and the requirements that it must 
satisfy. Development decisions, however, control the progress of the design process. They affect the 
resources, time, and technologies available to perform development activities. They define which 
activities should happen, their sequence, and who should perform them. 
Krishnan and Ulrich [27] make a literature review on product development decisions. They present a 
revision of a total amount of 200 references related to the design decisions and provide a long list of 
questions that follows the typical decomposition of product development. They observe that, while 
how products are developed differs not only across firms but within the same firm over time, what is 
being decided seems to remain fairly consistent at a certain level of abstraction. Some product 
development decisions include: Which (printing) technology will be adopted in the product? Where 
will the (printer) product be assembled? Who will be on the product development team and who will 
lead the team? Which variants of the (printer) product will be developed as part of the product family? 
Though most of them are development decisions, their list includes the following design decisions: 
What is the product architecture? What will be the overall physical form and industrial design of the 
product? What are the values of the key design parameters? What is the configuration of the 
components? What is the detailed design of the components, including material and process selection? 
While rigorous at a bibliographical level, the decision listed has not been empirically verified yet. An 
empirical study by García-Melón et al. [28] confirmed that the decisions identified in the literature do 
correspond to the decisions mostly made in innovative companies of the Valencia Region (Spain). 
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Figure 2. A characterization of decisions during the product design process 

Corresponding to the two types of decision named design decisions and development decisions [13]. 
We divide the decisions during the product design process into two types: Technical decision and 
organizational decision. Technical decisions focus on the product itself and determine the parameters 
about the product. Most of technical decisions are made by product design engineers. Organizational 
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decisions, however, control the progress of the design process. They define what will be done, when it 
will be done, and who will do it. Most of organizational decisions are made by design managers or 
people in other company management levels (e.g. the project leader judges the results obtained so far 
compared to the resources spend, and determines what to do next, how to do it, and who has to do it, 
the company management at project milestones judges the results obtained compared to the expected 
business opportunity, and determines the future of design project in a go/no-go decision [23]).  
Here we analyze design decisions in three dimensions as shown in Figure 2. Axes X indicates a design 
process consisting of four phases: Clarification of the task, conceptual design, embodiment design, and 
detail design [15]. Axes Y indicates different types of decision-makers including design engineer, 
design supervisor, design manager and company-level management. Axes Z indicates organizational 
decision and technical decision. 

3 PRODUCT DESIGN KNOWLEDGE 
Design knowledge can improve the quality of design decisions [29]. Increasing design knowledge and 
supporting designers to make right and intelligent decisions can achieve the improvement of the 
design efficiency. Many contemporary authors distinguish among data, information, and knowledge. 
The generally accepted view sees data as simple facts that become information as they are combined 
into meaningful structures, which subsequently become knowledge as meaningful information is put 
into a context and when it can be used to make predictions [30]. 
Unless specified otherwise, this paper uses “knowledge” interchangeably with “information”. 

3.1 Classification of Design Knowledge 

3.1.1 Related works 
Engineering designers need many different types of information. Many proposed classifications of 
engineering design knowledge can be found in the literature [31-33]. The classification by Vincenti 
[31] includes six categories such as fundamental design concepts, criteria & specification, theoretical 
tools, quantitative data, practical considerations and design instrumentalities. But it does not include 
the ‘design process’. The classification shown in Figure 3 by Zhang [32] reflects this concern. Li et al. 
[34] categorised the design knowledge into five types as shown in Figure 4: Design Process; Customer 
requirements; Design definition/design history and past cases; Practical considerations; Fundamental 
design concept and principles. 
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Figure 3. Design Knowledge by Zhang [32] 
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ICED’07/1999 4 



Ahmed et al. [35] classified product design knowledge by two dimensions: In one dimension, the 
knowledge is divided into process-related and product-related knowledge. In another dimension, the 
knowledge are divided into Stored externally Information, Stored internally in human memory 
(including Explicit knowledge, Implicit knowledge, and Tacit knowledge). Li and Zhang [36] 
classified design knowledge into four categories: (a) artefact (product) structures, (b) artefact 
behaviours, (c) artefact functions and (d) causalities among structures, behaviours and functions. 
Carstensen [37] explores the types of information needed by engineering designers including: Previous 
designs; Design rationales; Similar products; “Known problems” in products; Component 
specifications; Standards and norms; Working procedures; Production line characteristics; New 
materials and components; Literature and research results; Relevant persons; Project documentation. 
In one project of Ullman [38], information was organized by the component or assembly being worked 
on. However, as work progressed, and new parts evolved and old ones disappeared from consideration, 
this structure broke down. A second effort [39] tried to organize the information by issue being 
addressed; where an issue could be about a part, a feature of a part, a function or the process being 
used. This too ran into difficulty as issues were worked on, left for a while, returned to and sometimes 
abandoned. Finally, it was realized that the best structure was to think in terms of the decisions made 
[40]. Since those initial studies, work has focused on the mantra: Design is the evolution of 
information punctuated by decision-making. It is important to put heavy emphasis on decision-making 
because: A decision is a commitment to use resources. 

3.1.2 Classification of Product Design Knowledge 
In this paper we group product design knowledge into three groups: Product Knowledge, Process 
Knowledge and Product Support Knowledge. The first two only refer to the knowledge generated and 
then utilised during the product design process.  
Product knowledge is all knowledge related to the product itself. As in Aziz and Chassapis [41], any 
product related knowledge could be grouped into four categories: Knowledge about components; 
Knowledge about relations between components; Constraints on properties of materials involving part 
formation; Relations between components and user preferences. This part of knowledge is most for 
product design engineers who focus their efforts on the product itself. 
Process knowledge is the knowledge about the design process. This part of knowledge is most for 
product design managers who focus their efforts on the product design process, and based on this 
knowledge, they have to decide what the work will be done, when it will be done, and who will do it. 
As in [42], Jung et al. defined process knowledge into three types of process knowledge such as 
process template knowledge, process instance knowledge, and process-related knowledge. 
The latter one, Product Support Knowledge, refer to the knowledge coming from many different 
sources which locating outside the product design process, for example, knowledge from marketing, 
manufacturing, packaging etc.(see Figure 1). 

3.2 Knowledge needs of Decisions 
In engineering design process, design decision is knowledge intensive activity. The engineering design 
process can be described as a complex information processing activity, directed by the decisions made 
by the individuals in the design team [43]. Good decisions rely on relevant and accurate information. 
The importance of information is underlined by the fact that design activities both consume and create 
large amounts of information as they proceed. One study reported that designers spent in excess of 
50% of their time handling information, e.g., retrieving, organizing, etc [44]. Thus, the efficiency and 
the quality of the design process may depend considerably on how well designers are able to handle 
large amounts of information. To understand how best to support product designers’ information needs, 
we face the difficulty of having to study the complexity of the activity itself, the complexity of the 
environment, and the hidden nature of the information needs of the product designers. 
Different types of decisions need different types of knowledge. The most important information in 
design management are data describing the product itself, i.e. its geometry and direct properties 
(material, …). This information is most useful for product designer for technical decisions. The second 
major source for information is the product development process. This information is most useful for 
design managers or other people in company management levels. Design managers need to be able to 
keep an overview over multiple process steps, problems, decisions and schedules, e.g. for the design of 
sub-modules, product tests or the production of tools. 
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Li et al. [34] presents a list of knowledge support requirements elicited from engineering designers by 
interview. Eekels [12] indicates that, in order to decide, a decision-maker needs four kinds of 
information: publicly or privately accessible factual information concerning the alternatives; 
intuitively guessed factual information; normative information; methodic information. 
Here we propose a three dimensional model to illustrate the knowledge existing during the product 
design process as shown in Figure 5. 
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Figure 5. A three-dimensional characterisation of design knowledge 

4 DATA MINING IN MQD 
DM is at best a vaguely defined field; its definition largely depends on the background and views of 
the definer. In some literature, Knowledge Discovery in Database (KDD) refers to the overall process 
of discovering useful knowledge from data, and DM refers to a particular step in this process. DM is 
the application of specific algorithms for extracting patterns from data. Others see KDD 
interchangeable with DM. This paper adopts the latter point of view, i.e., DM is the nontrivial process 
of identifying valid, novel, potentially useful, and ultimately understandable patterns in data [45].  
The growing volume of MQD is a challenge that needs research on tools that discover unique 
properties of the data. Some works on DM in quality has been emerged (e.g. [11, 46-50]), but most of 
them focus on finding patterns to solve manufacturing problems, without considering the possibility of 
problems related with product design stages. Using DM to find useful quality-related knowledge in 
MQD is an important approach to meet knowledge needs of product designers, and furthermore, to 
support technical decisions of similar products or the redesign or improvement of the current product. 
This section proposes the quality-related knowledge discovery in MQD using DM approach. 

4.1 Framework of DM in MQD 
In practice, when the product has suffered the quality problem, engineers will examine whether there 
are causal relationships between the manufacturing process and product defects. However, there 
maybe some root causes existing in early product design stages. Many statistical methods are used to 
find quality problems in manufacturing processes. However, the quality problems are complicated and 
the results are usually hard to be interpreted. Thus, we can construct a DM framework with involved 
techniques to solve the complicated manufacturing problems through product design. Through 
accumulating DM experiences and transferring the extracted patterns into systematic rules and 
knowledge, similar problems can be identified efficiently and effectively through product design. 
According to Fayyad et al. [45], we constructed a DM framework to explore the huge volumes of 
MQD for finding patterns to support technical decisions of designers. This framework includes five 
major steps (Figure 6): problem definition, target data selection, data cleaning, data transformation, 
data mining implementation, and evaluation and interpretation. In order to understand the complete 
process of DM process, the details of its basic steps and the applicability of the DM approach are 
illustrated in the following subsection through one example being adapted from [49]. 

4.2 Example of DM in MQD 
The background of the example in [49] is illustrated as follows: 
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Figure 6. Framework of DM in MQD 

Large volumes of the dimensional data are collected during the fan blade manufacture. There are many 
statistical methods used to control production and support the manufacture of products within design 
limits. However, these kinds of methods cannot identify the manufacturing limitations of the current 
set of production systems. A product’s output dimensions are a good measure of the quality of the 
production cycle and can help in suggesting any alteration in the design or any dependency or relation 
between different dimensions resulting from the manufacturing process. It is very important for 
designers and production engineers to understand the interrelationships between different dimensions 
of the product, particularly when components have complex geometry and need to be manufactured to 
a high level of precision. This subsection will illustrate the complete steps of DM in MQD. 

4.2.1 Problem definition 
First we should develop an understanding of the application domain and the relevant prior knowledge 
and identifying the goal of DM. This research is to identify the interrelationships between different 
kinds of manufacturing quality characteristics of fan blade. During the fan blade manufacturing 
process, quality measurement and test are conducted to ensure the product quality. The product quality 
data, such as the width, height, thickness of fan blade, will be extracted to find some unknown patterns 
about the product. Data may be recorded during manufacturing, assembly, or testing to determine, for 
instance, how well products generally meet certain dimensional constraints. These kinds of 
transactional data can be analysed to study the effectiveness of a design in meeting the target strength, 
shape, and dimensionalities. Hence, transactional data can contain useful information that may enable 
designers to generate more efficient and optimal designs in the future. 

4.2.2 Target data selection 
There are many kinds of MQD generated and stored in different databases. In order to implement DM, 
we should create a target data set: selecting a data set, or focusing on a subset of variables or data 
samples, on which discovery is to be performed. 
Many dimensional values were examined at more than 250 different sections for each fan blade. It is 
not possible to explain the proposed methodology clearly and concisely using the complex geometry 
of the wide-chord fan blade, and all the different variables. Therefore, to reduce the complexity and to 
explain the approach fully, a simplified example of a small section of the product will be demonstrated 
using different dimensions. Here 13 different sections are chosen corresponding to the three important 
dimension such as thickness, width and height. These 13 different sections are named as aa_Thickness, 
ab_Thickness,…af_Thickness, aa_Width,…, ad_Width, aa_Height, ab_Height, ac_Height. Then the 
data sets concerning to these 13 sections of fan blade are chosen as target data sets. 

4.2.3 Data cleaning 
Data cleaning is a very important stage in the process of DM and is very time-consuming. The 
inappropriate data may lead to departure of mining results. It is therefore crucial that MQD be cleaned 
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carefully and thoroughly to make them ready for the different types of transformations that may be 
necessary before particular data mining techniques can be applied. 
Much of the data obtained from the manufacturing process of the fan blade were in the form of flat 
files, however, the collected data often include noisy, missing and inconsistent data, which should be 
cleaned to remove inconsistencies and discrepancies and then compiled into one workable table so that 
different data mining algorithms could be applied. In particular, deciding on strategies for handling 
missing data fields, replaced or deleted. 

4.2.4 Data transformation 
Different sections (such as aa_Thickness, ab_Thickness,…af_Thickness, aa_Width,…, ad_Width, 
aa_Height, ab_Height, ac_Height) for an output dimension of a fan blade are divided into 11 bands 
(such as Uout, Upper, H-Upper, S-Upper, Nominal, S-Lower, M-Lower, H-Lower, Lower, and Lout). 
The measured dimensional data value of different sections is then transformed into integer identifiers, 
which are easier to use as input for the association rule algorithm. This is then used to find the frequent 
itemsets and then the association rules. Then, each measure product has its integer identifier. Each 
integer identifier is a combination of two- and two-digit numbers (these numbers can be chosen 
according to the requirements). The first two digits show the dimensional band, they are numbered as 
11, 12, 13… 20, 21. The last two digits show the section of the product, they are numbered as 01, 02, 
03…12, 13. For example, if the ‘ac’ section of ‘Width’ (numbered as 09) has a measured value in the 
S-Lower band (numbered as 17), then that value will be translated as 1709. 
Then, each fan blade has 13 sections and each section has its measured value categories in to 11 
different bands. Therefore, each fan blade has 13 integer identifier, which should be considered as one 
record or item. Table 1 show 15 example data records which shows 15 different measured fan blades. 

Table 1. Example data 

ID Data 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1612, 1303, 1507, . . . 
1703, 1303, 1703, . . . 
1611, 1303, 1612, . . . 
1612, 1303, 1507, . . . 
1408, 1303, 1404, . . . 
2106, 1303, 1703, . . . 
1408, 1703, 1504, . . . 
1603, 1303, 1609, . . . 
1612, 1303, 1507, . . . 
1312, 1303, 1803, . . . 
1713, 1303, 1601, . . . 
1612, 1404, 1507, . . . 
1612, 1303, 1507, . . . 
1401, 2006, 1507, . . . 
1612, 1303, 1507, . . . 

4.2.5 Data Mining Implementation 
In implementation of DM task, first of all, matching the goals of the DM task to a particular data-
mining method. For example, summarization, classification, regression, clustering, and so on. Then, 
choosing the DM algorithm(s) to execute the DM methods. Then, DM techniques are performed to 
identify problems and specific patterns such as specific relationships between quality characteristics 
by applying DM technology. 
In the work of [49], association rule DM method and Apriori algorithm are used. Association rule 
mining can be used on historical data to find any relationships that may be present to improve designs. 
This can be illustrated with the example data shown in Table 1, which has been selected, cleaned, 
transformed. The data in Table 1 show 15 transactions or products, which have been carefully chosen 
for illustration purposes only and is just for showing the effectiveness of DM approach in MQD. 
There are many valid rules extracted in these data. The two are illustrated as follows: 
1. 1612-1507; 
2. 1612-1303. 
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4.2.6 Interpretation and evaluation 
All the results should be interpreted to be understood by people be of interest, and be evaluated by 
discussing with domain engineers and data experts.  
For example, the two rules extracted in the above subsubsection named “1612-1507” and “1612-1303” 
can be interpreted as follows: 
1. 1612-1507: IF ‘ab’ section of ‘Height’ is nominal THEN ‘aa’ section of ‘Width’ is S-Upper; 
2. 1612-1303: IF ‘ab’ section of ‘Height’ is nominal THEN ‘ac’ section of ‘Thickness’ is H-Upper. 
Confidence and support are the two most important indexes to evaluate the rule quality, which rules 
are one kind of knowledge represented in the form of “If …, Then …”. In this example, the first rule 
has 40 per cent support and 100 per cent confidence and the second rule also has support of 40 per 
cent and 83.3 per cent confidence. The first rule is a valid rule because 1507 and 1612 complement 
each other in the data, while the second rule is misleading as 1612 is complementing 1303 but 1303 
does not complement 1612. 
Then interpreting mined patterns, possibly returning to any of steps 1 through 5 for further iteration. 
This step can also involve visualization of the extracted patterns and models or visualization of the 
data given the extracted models. 

4.2.7 Utilization of knowledge 
Finally is acting on the discovered knowledge: using the knowledge directly, incorporating the 
knowledge into another system for further action, or simply documenting it and reporting it to 
interested parties. This process also includes checking for and resolving potential conflicts with 
previously believed (or extracted) knowledge. 
In this example, after the evaluation and interpretation, the first rule could be feed back to product 
designer. When the designer design similar fan blade, he should refer to the first rule such as “IF ‘ab’ 
section of ‘Height’ is nominal THEN ‘aa’ section of ‘Width’ is S-Upper” to avoid design mistake. 
It must be noted that the data mining process is an iterative way to extract valid, previously unknown 
information from data, and revise the empirical models via feedback. Often the patterns about quality 
characteristics cannot be easily identified at the beginning and thus we should discuss with domain 
experts again to check whether any data or information was missing. It usually needs several iterations 
to revise the models to enhance the accuracy and effectiveness of knowledge. Most previous work on 
DM process has focused on step 5, the data mining implementation. However, the other steps are as 
important (and probably more so) for the successful application of DM in practice. 

4.3 Knowledge Support Framework 
Contemporary design process becomes increasingly knowledge-intensive and collaborative. 
Knowledge-intensive support becomes more critical in the design process and has been recognized as 
a key solution towards future competitive advantages in product development. To improve the design 
process, it is imperative to provide knowledge support and share design knowledge among distributed 
designers. Marsh [51] found the proportion of designers’ time absorbed by information acquisition 
activities to be 20-30%. Marsh also found that the majority of information is obtained from personal 
contacts, who in 78% of cases retrieved it from memory. 
However, with the increasing flow of experts in manufacturing companies, knowledge base have to 
established to store more and more knowledge to meet the needs of product designers, especially for 
those novice designers. Here we propose one framework which could extract quality-related 
knowledge to support technical decisions for product designers. 
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Figure 7. Framework of Knowledge Support for Technical Design Decision-making 

ICED’07/1999 9 



The ultimate objective of our work is the development and implementation of MQD-based Design 
Decision Support System (MQD-based DDSS), which acts as an aid tool for support design decisions 
concerning quality aspect. Fig. 7 represents the conceptual framework of the MQI-based DDSS which 
will be developed in our future work. In this framework, large quantities of MQD are recorded in 
MQD base, through our DM approach, quality-related knowledge are discovered and stored into the 
knowledge base after evaluation and interpretation. Then this knowledge could be provided to product 
designers. All these process should involve the participant of domain expert to ensure the effectiveness 
and efficiency of our proposed approach. 

5 CONCLUSIONS AND FUTURE WORKS 
Product design is knowledge-intensive process and involves large quantities of decisions. The 
efficiency and effectiveness of these decisions depends on the provision of many kinds of related 
knowledge to designers from different sources throughout the lifecycle. Quality related knowledge is 
one of the most important knowledge sources. 
This work proposes one knowledge discovery approach using DM, which extracts quality-related 
knowledge from large quantities of MQD generated during the product manufacturing process. To 
understand what kind of decisions are made and what kind of knowledge these decisions need, 
decision making during the engineering design process is analyzed and classified into two main 
categories, namely organizational and technical decisions. Then, this paper analyzed and classified 
product design knowledge into three categories, namely, product-related, process-related and product 
support knowledge. To efficiently using quality-related knowledge to support design decisions, a data 
mining based knowledge discovery approach is proposed. This approach can extract quality related 
knowledge from large volume of manufacturing quality data. 
Some further works need to be investigated in-depth. 
 (1) Design decision model need to be expressed which could be in the form of mathematical 
expression. The expression should include the knowledge which is input or output of the decisions. 
(2) Knowledge needs of different kinds of decisions during different product design stages should be 
analyzed in-depth. This work will assist the efficient implementation of the proposed DM based 
knowledge discovery approach. 
(3) The DM approach should be refined. More aspects about steps 1-6 should be taken into account, 
e.g. the selection criteria of DM methods and DM algorithms, the evaluation criteria, etc. 
(4) The successful development of MQD-based DDSS is the key issue to achieve our ultimate 
objective of supporting product design decisions. 
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